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 27.1 Introduction to Supervised Learning 

 In machine learning, inductive learning refers to training a learner through use 
of examples. The simplest case of this is rote learning, whereby the learner 
simply memorizes the training examples and reuses them in the same 
situations. Because they do not generalize from training data, rote learners 
can only classify exact matches of previous examples. A further limitation 
of rote learning is that the learned examples might contain conflicting 
information, and without some form of generalization, the learner cannot 
effectively deal with this noise. To be effective, a learner must apply 
heuristics to induce reliable generalizations from multiple training examples 
that can handle unseen situations with some degree of confidence. 

A common inductive learning task is learning to classify specific instances 
into general categories. In supervised learning, a teacher provides the system 
with categorized training examples. This contrasts with clustering and 
similar unsupervised learning tasks where the learner forms its own 
categories from training data. See (Luger 2009) for a discussion of these 
different learning tasks. An example of a supervised inductive learning 
problem, which we will develop throughout the chapter is a bank wanting 
to train a computer learning system categorize new borrowers according to 
credit risk on the basis of properties such as their credit 
history, current debt, their collateral, and current income. 
One approach would be to look at the credit risk, as determined 
over time by the actual debt payoff history of data from previous 
borrowers to provide categorized examples. In this chapter we do exactly 
that, using the ID3 algorithm. 

27.2 Representing Knowledge as Decision Trees 

 A decision tree is a simple form of knowledge representation that is widely 
used in both advisors and machine learning systems. Decision trees are 
recursive structures in which each node examines a property of a collection 
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of data, and then delegates further decision making to child nodes based on 
the value of that particular property (Luger 2009, Section 10.3). The leaf 
nodes of the decision tree are terminal states that return a class for the 
given data collection. We can illustrate decision trees through the example 
of a simple credit history evaluator that was used in (Luger 2009) in its 
discussion of the ID3 learning algorithm. We refer the reader to this book 
for a more detailed discussion, but will review the basic concepts of 
decision trees and decision tree induction in this section. 

Assume we wish to assign a credit risk of high, moderate, or low to people 
based on the following properties of their credit rating: 

Collateral, with possible values {adequate, none} 

Income, with possible values {“0$ to $15K”, “$15K to $35K”,  

“over $35K”} 

Debt, with possible values {high, low} 

Credit History, with possible values {good, bad, unknown} 

We could represent risk criteria as a set of rules, such as “If debt is low, 
and credit history is good, then risk is moderate.” Alternatively, we can 
summarize a set of rules as a decision tree, as in figure 27.1. We can 
perform a credit evaluation by walking the tree, using the values of the 
person’s credit history properties to select a branch. For example, using the 
decision tree of figure 27.1, an individual with credit history = unknown, 
debt = low, collateral = adequate, and income = $15K to $35K would be 
categorized as having low risk. Also note that this particular categorization 
does not use the income property. This is a form of generalization, where 
people with these values for credit history, debt, and collateral qualify as 
having low risk, regardless of income. 

 
Figure 27.1 A Decision Tree for the Credit Risk Problem (Luger 2009) 
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Now, assume the following set of 14 training examples. Although this does 
not cover all possible instances, it is large enough to define a number of 
meaningful decision trees, including the tree of figure 27.1 (the reader may 
want to construct several such trees. See exercise 1). The challenge facing 
any inductive learning algorithm is to produce a tree that both covers all 
the training examples correctly, and has the highest probability of being 
correct on new instances. 

risk collateral income debt credit history 

high none $0 to $15K high bad 

high none $15K to $35K high unknown 

moderate none $15K to $35K low unknown 

high none $0 to $15K low unknown 

low none over $35K low unknown 

low adequate over $35K low unknown 

high none $0 to $15K low bad 

moderate adequate over $35K low bad 

low none over $35K low good 

low adequate over $35K high good 

high none $0 to $15K high good 

moderate none $15K to $35K high good 

low none over $35K high good 

high none $15K to $35K high bad 

A valuable heuristic for producing such decision trees comes from the 
time-honored logical principle of Occam’s Razor. This principle, first 
articulated by the medieval logician, William of Occam, holds that we 
should always prefer the simplest correct solution to any problem. In our 
case, this would favor decision trees that not only classify all training 
examples, but also that do so, on average, by examining the fewest 
properties possible. The reason for this is straightforward: the simplest 
decision tree that correctly handles the known examples is the tree that 
makes the fewest assumptions about unknown instances. Stating it simply, 
the fewer assumptions made, the less likely we are to make an erroneous 
one. 

Because omitting properties is a way of generalizing decision trees, and 
because the order in which the properties are tested determines the ability 
of the tree to omit properties while still matching all the test data, the order 
of tests from root down to leaf nodes is the major factor in inducing 
decision trees. This is captured in the following pseudo code for a recursive 
algorithm for inducing trees: 

function induce_tree (example_set, Properties) 

begin 

  if all entries in example_set are the same class 

  then return a leaf node labeled with that class 
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  else if Properties is empty 

   then return a leaf node with default class 

  else 

    begin 

       select a property, P, and  

  make it the root of the current tree 

      delete P from Properties 

      for each value V of P 

        begin 

          create a branch of the tree labeled with V 

          let partition_V be elements of  

    example_set with values V of P 

          let branch_V =  

   induce_tree (partition_V, Properties) 

          attach branch_V to root for value V of P 

        end 

      endfor 

      return current root 

    end 

  endif 

end 

This algorithm builds trees in a top-down fashion. It stops when all 
examples have the same categorization, thereby pruning extraneous 
branches of the tree. Using this algorithm, production of a simple (i.e., 
generalized) tree depends upon the order in which properties are selected. 
This, in turn, depends upon the selection function used to select the 
property to check in the current node of the tree. 

For the decision tree induction, we use the original approach from the ID3 
algorithm of (Quinlan 1986) elaborated by Luger (2009, Section 10.3). This 
approach uses information theory to select the property that gains the most 
information about the example set. Intuitively, this heuristic should 
minimize the number of properties the tree checks. We will explain it in 
detail later. We should note, however, that there are several important 
extensions of the early ID3 paradigm, differing only in a few operations. 
For example, C4.5 and C5.0 are Quinlan's (1996) own extensions that 
overcome a number of the original ID3 weaknesses. We will not 
implement C4.5/C5.0 here, but we should remember that more 
sophisticated or domain-specific modifications to the core decision tree 
induction algorithm may be desired by future developers using this code.  

27.3 A Decision Tree Induction Program 

 Implementing this in Java raises at least two interesting problems. 
Managing trees, lists of examples, partitioning examples on various 
properties, and so forth is a challenge for designing data structures.  Our 
example code will not be optimally efficient, but is intended to give the 
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student opportunities to improve performance by using table lookup and 
other techniques to reduce time spent scanning lists of examples. The 
other challenge will be in maintaining the quality of training data. We take a 
simplified approach of requiring all examples contain legitimate values for 
all desired properties. Although the machine learning literature is filled with 
techniques for managing missing or noisy data, this simple assumption will 
let us investigate a number of interesting Java techniques, such as 
immutable objects, error checks in constructors, etc. 

Figure 27.2 shows the five classes that form the basis of our 
implementation. AbstractDecisionTreeNode defines the basic 
behaviors of a decision tree. It is a recursive structure, as shown by the use 
of an assembly link back to itself. AbstractDecisionTreeNode will 
define methods to solve a new instance by walking the tree, and the basic 
tree induction algorithm mentioned above. The method to evaluate a test 
property’s partition of the example space into subproblems into will be 
abstract in this class, allowing definition of multiple alternative evaluation 
heuristics. The class, InformationTheoreticDecisionTreeNode, 
will implement the basic ID3 evaluation heuristic, which uses information 
theory to select a property that gives the greatest information gain on the 
set of training examples. 

The remaining classes define and manage training examples. An 
AbstractProperty defines properties as <name, value> pairs. It is an 
abstract class, requiring subclasses define a method to test for legal <name, 
value> definitions. An AbstractExample defines examples as a set of 
properties and a categorization of those properties: i.e. a single row in the 
example table given above. Like AbstractProperty, it requires 
subclasses define domain specific checks for the validity of examples. 
Finally, ExampleSet maintains a set of training examples, such as is 
given in the table above. It enforces checks that all examples are of the 
same type, provides basic accessors, and also methods to partition an 
example set on specific properties. 

  

 
Figure 27.2 Class structure of decision tree nodes and examples 
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Properties as 
Immutable 

Objects 

The basic definition of a property is straightforward: it consists of two 
strings, defining the name and value respectively. A simple initial 
implementation might be: 

public class Property  
{   
 private String name = null;   
 private String value = null;     

 public Property(String name, String value)  
 {  
  this.name = name;    
  this.value = value; 
  }     
 public String getName() 
 { 
   return name; 
  }  
 public String getValue() 
 { 
   return value; 
  }    
}  

Although this gives the basic structure of the class, and would work in the 
program, it fails to perform any correctness checks on data values. The first 
of these the opportunity to perform type checks on property values. 
Referring to the credit evaluation example, the only values for debt are 
“high” and “low,” and a robust program should check for them.  

We can implement this by making Property an abstract class that uses 
an abstract method to test for legal property values. Each property type will 
be a subclass that defines this method.  Our definition then becomes:  

public abstract class AbstractProperty  
{ 
  private String value = null; 
   public AbstractProperty(String name,  
   String value)  
   throws IllegalArgumentException  
 { 
   if(isLegalValue(value) == false) 
    throw  
    new IllegalArgumentException(value +  
     "is an illegal Value for Property " +  
     getName()); 
  this.value = value; 
  } 
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  public final String getValue() 
 { 
   return value; 
 } 
 public abstract boolean isLegalValue(String  
  value);  
  public abstract String getName(); 
 }  

This version uses the islegalValue(…) method to check for bad 
values in the constructor, throwing an IllegalArgumentException 
if one is found. Since property is now an abstract class, any property type 
must define its own subclass defining the abstract methods. Also note that, 
since the name of a property is the same for all instances of a type, we have 
made getName() an abstract method as well. An example of how a 
property can implement this is given by this implementation of the debt 
property: 

public class DebtProperty extends AbstractProperty { 
   public static final String DEBT = "Debt"; 
  public static final String HIGH = "high"; 
  public static final String LOW = "low"; 
   public DebtProperty(String value)  
 { 
  super(value); 
  } 
   public boolean isLegalValue(String value) 
 { 
   return(value.equals(HIGH) || 
    value.equals(LOW)); 
  } 
   public final String getName() 
 { 
   return DEBT; 
  } 
 } 

Although simple, the implementation of AbstractProperty has 
another interesting quality. Note that the member variable value is 
private, and we have not provided a set method other than through the 
constructor. This means that, once an instance of property is created, its 
value cannot change. This pattern is called an immutable object. Because 
immutable objects avoid many types of bugs (imagine the effect on the 
learning algorithm of changing a property value during execution), this 
should be used where it matches our intent. To reduce the chance that a 
well-intentioned programmer will change this, we should write code so as 
to make our intention clear. We can do this by making our get method 
final, to prevent subclasses from violating the immutability pattern, and 
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also by defining set methods that throw an exception if called. This 
completes the definition of AbstractProperty as: 

public abstract class AbstractProperty  

{ 

  private String value = null; 

  public AbstractProperty(String value)  

  throws IllegalArgumentException  

 { 

   if(isLegalValue(value) == false) 

    throw  

   new IllegalArgumentException(value +  

   "is an illegal Property Value for " +  

   getName()); 

   this.value = value; 

  } 

   public abstract boolean isLegalValue(String  

  value); 

  public abstract String getName(); 

  public final String getValue() 

 { 

   return value; 

  } 

   //Enforcing Immutable object pattern 

  public final void setValue(String v)  

  throws UnsupportedOperationException  

 { 

   throw new UnsupportedOperationException(); 

  } 

   //Enforcing Immutable object pattern 

  public final void setName(String n)  

  throws UnsupportedOperationException  

 { 

   throw new UnsupportedOperationException(); 

  } 

 }   
Implementing 

Examples 
Like a property, an example is conceptually simple: it is a collection of 
properties describing a problem instance and a categorization of that 
instance. In our credit example, the properties that form an example are 
debt, collateral, credit history, and income. The example category is a risk 
assessment. Each row of the example table in section 27.1 would be 
represented as an example. Like the property class, however, it also 
presents opportunities for insuring the validity of examples. In this case, we 
will require that an example consist only of specified properties, and that a 
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legal example include all properties. Examples also offer an opportunity to 
use an immutable object pattern, since it makes little sense to allow 
examples to change during the course of a learning session. 

The structure of an example is similar to that of an 
AbstractProperty: it is an abstract class that requires subclasses 
define methods to support validity checks. We will follow the immutable 
object pattern, providing access methods but no “add,” “set,” or other 
modification methods, and requiring all properties be defined in the 
constructor. 

The class has two member variables. A category is a String defining 
the classification of the example. In our credit example, this would be the 
risk level of high, moderate, or low. The properties member variable is 
a Map that indexes different properties by their name. We define two 
constructors. The primary constructor does error checks to require that 
each example contains all legal properties and only legal properties. The 
single argument constructor allows us to define uncategorized examples. 
Both of these call the private method, addProperties to add the 
elements of the propertyList argument to the properties member 
variable. This method also checks that the propertyList argument 
contains only legal values and all legal values. The implementation of 
AbstractExample is:  

public abstract class AbstractExample  
{ 
 private String category = null; 
 private Map<String, AbstractProperty> properties  
  = new HashMap <String, AbstractProperty> (); 
 // Constructor for classified examples 
   public AbstractExample(String category,  
  AbstractProperty... propertyList)  
  throws IllegalArgumentException  
 { 
   if(isLegalCategory(category) == false) 
    throw  
   new IllegalArgumentException(category + 
   "is an illegal category for example."); 
   this.category = category; 
    addProperties(propertyList); 
  } 
 // Constructor for unclassified examples 
 public AbstractExample(AbstractProperty...  
   propertyList)  
   throws IllegalArgumentException  
 { 
   addProperties(propertyList); 
  } 
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 private void addProperties(AbstractProperty[]  
   propertyList)  
   throws IllegalArgumentException  
 { 
   Set<String> requiredProps =  
   getPropertyNames(); 
  // check that all properties are legal 
   for(int i = 0; i < propertyList.length;  
   i++) 
  { 
   AbstractProperty prop =  
    propertyList[i];    
  if(requiredProps.contains( 
     prop.getName()) == false) 
    throw  
    new IllegalArgumentException( 
    prop.getName() +  
    "illegal Property for example."); 
    properties.put(prop.getName(), prop); 
    requiredProps.remove(prop.getName()); 
   } 
  // Check that all legal properties were used 
    if(requiredProps.isEmpty() == false) 
  { 
    Object[] p = requiredProps.toArray(); 
    String props = ""; 
    for (int i = 0; i < p.length; i++) 
     props += (String)p[i] + " "; 
    throw  
    new IllegalArgumentException( 
    "Missing Properties in example: " + 
    props); 
   } 
  } 
   public AbstractProperty getProperty( 
  String name) 
 { 
   return properties.get(name); 
  } 
  public String getCategory() 
 { 
   return category; 
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  } 
  public String toString() 
 { 
   // to be defined by reader 
  } 
  public abstract Set<String> getPropertyNames(); 
 }  

This implementation of AbstractExample as an immutable object is 
incomplete in that it does not include the techniques demonstrated in 
AbstractProperty to enforce the immutability pattern. We leave this 
as an exercise. 

Implementing 
ExampleSet 

ExampleSet, along with AbstractDecisionTreeNode, is one of 
the most interesting classes in the implementation. This is because the 
decision tree induction algorithm requires a number of fairly complex 
operations for partitioning the example set on property values. The 
implementation presented here is simple and somewhat inefficient, storing 
examples as a simple vector. This requires examination of all examples to 
form partitions, retrieve examples with a specific value for a property, etc. 
We leave a more efficient implementation as an exercise. 

In providing integrity checks on data, we have required that all examples be 
categorized, and that all examples belong to the same class. 

The basic member variables and accessors are defined as:  
public class ExampleSet  

{ 

   private Vector<AbstractExample> examples =  

  new Vector<AbstractExample>(); 

  private HashSet<String> categories =  

  new HashSet<String>(); 

  private Set<String> propertyNames = null; 

 public void addExample(AbstractExample e)  

  throws IllegalArgumentException  

 { 

  if(e.getCategory() == null) 

    throw new IllegalArgumentException( 

    "Example missing categorization."); 

  // Check that new example is of same class  

  // as existing examples  

   if((examples.isEmpty()) || 

    e.getClass() ==  

    examples.firstElement().getClass()) 

   { 

    examples.add(e); 

    categories.add(e.getCategory()); 
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    if(propertyNames == null) 

     propertyNames =  
     new HashSet<String>( 
      e.getPropertyNames()); 

   } 

   else 

    throw new IllegalArgumentException( 
    "All examples must be same type."); 

  } 

  public int getSize() 

  { 

   return examples.size(); 

  } 

  public boolean isEmpty() 

 { 

   return examples.isEmpty(); 

  } 

  public AbstractExample getExample(int i) 

  { 

   return examples.get(i); 

  } 

  public Set<String> getCategories() 

 { 

   return new HashSet<String>(categories); 

  } 

  public Set<String> getPropertyNames() 

 { 

   return new HashSet<String>(propertyNames); 

  } 

           // More complex methods to be defined. 

 public int getExampleCountByCategory(String cat)  

  throws IllegalArgumentException  

 {  

                       // to be defined below. 

 } 

 public HashMap<String, ExampleSet> partition( 
  String propertyName)  

  throws IllegalArgumentException 

 { 

                       // to be defined below. 

 } 

} 
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As mentioned, this implementation is fairly simple. It stores examples as a 
Vector, so most retrieval or partitioning operations will require iterating 
through this list. The categories and propertyNames member 
variables are a convenience, allowing simpler access of these values. Since 
example sets should not change during a learning session, we could use an 
immutable object pattern in the ExampleSet implementation. This 
implementation does not, since it would lead to extremely complex 
constructor implementations. Instead, we implemented an addExample 
method. This method performs simple data integrity checks, requiring that 
all examples be of the same type, and prohibiting unclassified examples. 
Reworking this using an immutable pattern is left as an exercise. The 
remaining methods are straightforward accessors. 

ExampleSet includes a number of methods to support the induction 
algorithm. The first of these counts the number of examples that belong to 
a given category: 

public int getExampleCountByCategory(String cat)  

 throws IllegalArgumentException  

{ 

 Iterator<AbstractExample> iter =  

  examples.iterator(); 

  AbstractExample example; 

  int count = 0; 

 while(iter.hasNext()) 

 { 

  example = iter.next(); 

  if(example.getCategory().equals(cat)) 

     count++; 

  } 

   return count; 

 } 

A more complex method partitions the example set according to different 
examples value for a specified property. Partition takes as argument a 
property name, and returns an instance of HashMap<String, 
ExampleSet> where each key is a property value, and each value is an 
instance of ExampleSet containing examples that have that value for the 
chosen property. Partition calls to private methods, getValues, 
which returns a list of values for a property that appear in the example set, 
and getExamplesByProperty, which constructs a new instance of 
ExampleSet where each example has the same value for a property. 

public HashMap<String, ExampleSet> partition( 

 String propertyName)  

 throws IllegalArgumentException  

{ 

 HashMap<String, ExampleSet> partition =  

  new HashMap<String, ExampleSet>(); 



380 Part IV: Programming in Java 

  Set<String> values = getValues(propertyName);  
 Iterator<String> iter = values.iterator();  
 while(iter.hasNext()) 

 { 

  String val = iter.next(); 

  ExampleSet examples =  

   getExamplesByProperty(propertyName,  

    val); 

   partition.put(val, examples);  

 } 

 return partition; 

} 

private Set<String> getValues(String propName) 

{  

 HashSet<String>values = new HashSet<String>(); 

 Iterator<AbstractExample> iter =  

  examples.iterator(); 

 while(iter.hasNext()) 

 { 

  AbstractExample ex = iter.next();   
 values.add(ex.getProperty(propName). 

   getValue()); 

 } 

 return values; 

} 

private ExampleSet getExamplesByProperty( 

 String propName, String value)  

 throws IllegalArgumentException  

{ 

  ExampleSet result = new ExampleSet(); 

  Iterator<AbstractExample> iter =  

  examples.iterator(); 

  AbstractExample example; 

  while(iter.hasNext()) 

 { 

   example = iter.next(); 

  if(example.getProperty(propName).getValue(). 

    equals(value)) 

    result.addExample(example); 

  } 

  return result; 

 } 
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Placing the partitioning algorithm in a method of ExampleSet, rather 
than in the actual decision tree induction algorithm was an interesting 
design decision. The reason for this choice was a desire to treat 
ExampleSet as an abstract data type, including all operations on it in its 
class definition.  

Although this implementation works, it is inefficient, performing multiple 
iterations through lists of examples. An alternative approach would 
construct more complex sets of indices of examples by property and value 
on construction. Trying this approach and evaluating its effectiveness is left 
as an exercise. 

Implementing 
Decision Tree 

Nodes 

A decision tree node will define methods to solve problems by walking the 
tree, as described in section 27.1. We have also chosen to implement the 
basic induction algorithm in the decision tree class. Justification for this 
decision was that the inherently recursive nature of the induction algorithm 
matched the recursive structure of trees, simplifying the implementation.  
Because the induction algorithm is general, and could be used with a 
variety of heuristics for evaluating candidate example partitions, we will 
make the basic implementation of decision trees an abstract class.  

The basic definition of AbstractDecisionTreeNode appears below. 
Member variables include category, which is set to a categorization in 
leaf nodes; for internal nodes, its value is not defined. 
DecisionPropertyName is the property on which the node branches; 
it is undefined for leaf nodes. Children is a HashMap that indexes child 
nodes by values of decisionPropertyName. Each constructor calls 
induceTree to perform tree induction. Note that the two-argument 
constructor is protected. Its second argument is the list of unused 
properties for consideration by the induction algorithm, and it is only used 
by the induceTree method. The remaining methods defined below are 
straightforward accessors. 

public abstract class AbstractDecisionTreeNode  

{ 

 private String category = null; 

 private String decisionPropertyName = null; 

 private HashMap<String,AbstractDecisionTreeNode>  

  children = new  

  HashMap<String,AbstractDecisionTreeNode>(); 

 public AbstractDecisionTreeNode ( 

   ExampleSet examples)  

  throws IllegalArgumentException  

 { 

  induceTree(examples,  

   examples.getPropertyNames()); 

   } 

 protected AbstractDecisionTreeNode(ExampleSet  

  examples, Set<String> selectionProperties) 
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  throws IllegalArgumentException 

 { 

   induceTree(examples, selectionProperties); 

 } 

   public boolean isLeaf() 

 { 

  return children.isEmpty(); 

   }     

 public String getCategory() 

 { 

  return category; 

   }           

 public String getDecisionProperty()  

 { 

  return decisionPropertyName; 

   } 

 public AbstractDecisionTreeNode getChild(String  

  propertyValue) 

 {         

  return children.get(propertyValue); 

 } 

   public void addChild(String propertyValue,  

  AbstractDecisionTreeNode child)  

 { 

      children.put(propertyValue, child); 

   } 

 public String Categorize(AbstractExample ex) 

 { 

  // defined below 

 } 

 public void induceTree(ExampleSet examples,  

   Set<String> selectionProperties) 

   throws IllegalArgumentException  

 { 

  // defined below 

 } 

 public void printTree(int level) 

 {  

  // implementation left as an exercise 

 } 

 protected abstract double   
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  evaluatePartitionQuality(HashMap<String,  

   ExampleSet> part, ExampleSet examples) 

   throws IllegalArgumentException;      

 protected abstract AbstractDecisionTreeNode  
  createChildNode(ExampleSet examples,  

  Set<String> selectionProperties) 

  throws IllegalArgumentException; 

} 

Note the two abstract methods for evaluating a candidate partition and 
creating a new child node. These will be implemented on 27.3. 

Categorize categorizes a new example by performing a recursive tree 
walk. 

public String categorize(AbstractExample ex) 

{ 

 if(children.isEmpty()) 

  return category; 

  if(decisionPropertyName == null) 

  return category; 

 

 AbstractProperty prop =  

  ex.getProperty(decisionPropertyName); 

    AbstractDecisionTreeNode child =  

  children.get(prop.getValue()); 

     if(child == null) 

      return null; 

  return child.categorize(ex); 

} 

InduceTree performs the induction of decision trees. It deals with four 
cases. The first is a normal termination: all examples belong to the same 
category, so it  creates a leaf node of that category. Cases two and three 
occur if there is insufficient information to complete a categorization; in 
this case, the algorithm creates a leaf node with a null category.  

Case four performs the recursive step. It iterates through all properties that 
have not been used in the decision tree (these are passed in the parameter 
selectionProperties), using each property to partition the example 
set. It evaluates the example set using the abstract method, 
evaluatePartitionQuality. Once it finds the best evaluated 
partition, it constructs child nodes for each branch. 

public void induceTree(ExampleSet examples,  
      Set<String> selectionProperties) 

 throws IllegalArgumentException      

{ 
          // Case 1: All instances are the same                 
      // category, the node is a leaf.  
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if(examples.getCategories().size() == 1) 

 { 

  category = examples.getCategories(). 

   iterator().next(); 

  return; 

 } 

               //Case 2: Empty example set. Create 
                     // leaf with no classification. 

    if(examples.isEmpty()) 

  return; 

                //Case 3: Empty property set; could not classify. 

  if(selectionProperties.isEmpty()) 

  return; 

          // Case 4: Choose test and build subtrees. 
             // Initialize by partitioning on first 
                               // untried property. 

 Iterator<String> iter =  
       selectionProperties.iterator(); 

 String bestPropertyName = iter.next(); 

 HashMap<String, ExampleSet> bestPartition =  
   examples.partition(bestPropertyName); 

 double bestPartitionEvaluation =  
      evaluatePartitionQuality(bestPartition,  
   examples); 

            // Iterate through remaining properties. 

 while(iter.hasNext()) 
 { 

  String nextProp = iter.next(); 

  HashMap<String, ExampleSet> nextPart =  
        examples.partition(nextProp); 

  double nextPartitionEvaluation =  
        evaluatePartitionQuality(nextPart,  

    examples);     

              // Better partition found. Save. 

  if(nextPartitionEvaluation >  

   bestPartitionEvaluation) 

  {  

   bestPartitionEvaluation =  

    nextPartitionEvaluation; 

   bestPartition = nextPart; 

   bestPropertyName = nextProp;  

   } 
 } 
          // Create children; recursively build tree. 

  this.decisionPropertyName = bestPropertyName; 
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 Set<String> newSelectionPropSet =  
     new HashSet<String>(selectionProperties); 

    newSelectionPropSet.remove(decisionPropertyName); 

 iter = bestPartition.keySet().iterator();   

 while(iter.hasNext()) 

 { 

   String value = iter.next(); 

   ExampleSet child = bestPartition.get(value); 

   children.put(value,  

   createChildNode(child,  

    newSelectionPropSet)); 

 } 

27.4 ID3: An Information Theoretic Tree Induction Algorithm 

 The heart of the ID3 algorithm is its use of information theory to evaluate 
the quality of candidate partitions of the example set by choosing 
properties that gain the most information about an examples 
categorization. Luger (2009) discusses this approach in detail, but we will 
review it briefly here. 

Shannon (1948) developed a mathematical theory of information that 
allows us to measure the information content of a message. Widely used in 
telecommunications to determine such things as the capacity of a channel, 
the optimality of encoding schemes, etc., it is a general theory that we will 
use to measure the quality of a decision property. 

Shannon’s insight was that the information content of a message depended 
upon two factors. One was the size of the set of all possible messages, and 
the probability of each message occurring. Given a set of possible 
messages, M = {m1, m2 . . . mn}, the information content of any 
individual message is measured in bits by the sum, across all messages in M 
of the probability of each massage times the log to the base 2 of that 
probability. 

 I(M) = Σ – p(mi) log2 p(mi) 

Applying this to the problem of decision tree induction, we can regard a set 
of examples as a set of possible messages about the categorization of an 
example. The probability of a message (a given category) is the number of 
examples with that category divided by the size of the example set. For 
example, in the table in section 27.1, there are 14 examples. Six of the 
examples have high risk, so p(risk = high) = 6/14. Similarly, p(risk = 
moderate) = 3/14, and p(risk = low) = 5/14. So, the information in any 
example in the set is: 

I(example set) = -6/14 log (6/14) -3/14 log (3/14) -5/14 log (5/14) 

  = - 6/14 * (-1.222) - 3/14 * (-2.222) - 5/14 * (-1.485) 

  = 1.531 bits 

We can think of the recursive tree induction algorithm as gaining 
information about the example set at each iteration. If we assume a set of 
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training instances, C, and a property P with n values, then P will partition C 
into n subsets, {c1, c2, . . . cY}. The information needed to finish inducing 
the tree can be measured as the sum of the information in each subset of 
the partition, weighted by the size of that partition. That is, the expected 
information gain to complete the tree, E, is computed by: 

 E(P) = S (|ci|/|C|) * I(ci) 

Therefore, the information gained for property P is: 

 Gain(P) = I(C) - E(P) 

The ID3 algorithm uses this value to rank candidate partitions. 
Implementing 

Information 
Theoretic 

Evaluation 

We will implement this in a subclass of AbstractDecisionTreeNode 
called InformationTheoreticDecisionTreeNode. This class will 
implement the two abstract methods of the parent class, along with needed 
constructors. The createChildNode method is called in 
AbstractDecisionTreeNode to create the proper type of child node. 
EvaluatePartitionQuality computes the information gain of a 
partition. It calls the private methods computeInformation and 
log2. 

public class InformationTheoreticDecisionTreeNode 
 extends  AbstractDecisionTreeNode  

{ 

 public InformationTheoreticDecisionTreeNode( 

  ExampleSet examples)  

  throws IllegalArgumentException  

 { 

  super(examples); 

 } 

 public InformationTheoreticDecisionTreeNode( 

  ExampleSet examples,  

  Set<String> selectionProperties)  

  throws IllegalArgumentException  

 { 

   super(examples, selectionProperties); 

  } 

   protected AbstractDecisionTreeNode  

  createChildNode( 

  ExampleSet examples,  

  Set<String> selectionProperties)  

  throws IllegalArgumentException  

 { 

  return new  

   InformationTheoreticDecisionTreeNode( 

    examples, selectionProperties); 

    } 
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 protected double evaluatePartitionQuality( 
      HashMap<String, ExampleSet> part,  
      ExampleSet examples)  

  throws IllegalArgumentException  

 { 

  double examplesInfo =  
   computeInformation(examples); 

   int totalSize = examples.getSize(); 

    double expectedInfo = 0.0; 

    Iterator<String> iter =  
   part.keySet().iterator(); 

    while(iter.hasNext()) 

  { 

   ExampleSet ex = part.get(iter.next());  

   int partSize = ex.getSize(); 

   expectedInfo += computeInformation(ex)  

    * partSize/totalSize;       
 }       

  return examplesInfo - expectedInfo; 

 }                        

 private double computeInformation( 
      ExampleSet examples)  

  throws IllegalArgumentException  

 { 

  Set<String> categories =  
   examples.getCategories(); 

  double info = 0.0; 

  double totalCount = examples.getSize();   

        Iterator<String> iter =  
       categories.iterator(); 

  while (iter.hasNext()) 

  { 

   String cat = iter.next(); 

   double catCount = examples. 

    getExampleCountByCategory(cat);  

   info += -(catCount/totalCount)* 
     log2(catCount/totalCount);  

  } 

  return info; 

 } 

  private double log2(double a) 

 { 

  return Math.log10(a)/Math.log10(2); 

   } 

}    



388 Part IV: Programming in Java 

 Exercises 

 1. Construct two or three different trees that correctly classify the training 
examples in the table of section 27.1. Compare their complexity using 
average path length from root to leaf as a simple metric. What informal 
heuristics would use in constructing the simplest trees to match the data? 
Manually build a tree using the information theoretic test selection 
algorithm from the ID3 algorithm. How does this compare with your 
informal heuristics? 

2. Extend the definition of AbstractExample to enforce the 
immutable object pattern using AbstractProperty as an example. 

3.The methods AbstractExample and AbstractProperty throw 
exceptions defined in Java, such as  IllegalArgumentException 
or UnsupportedOperationException when passed illegal values 
or implementers try to violate the immutable object pattern. An alternative 
approach would use user-defined exceptions, defined as subclasses of 
java.lang.RuntimeException. Implement this approach, and discuss its 
advantages and disadvantages. 

4. The implementation of ExampleSet in section 27.2.3 stores 
component examples as a simple vector. This requires iteration over all 
examples to partition the example set on a property, count categories, etc. 
Redo the implementation using a set of maps to allow constant time 
retrieval of examples having a certain property value, category, etc. 
Evaluate performance for this implementation and that given in the 
chapter. 

5. Complete the implementation for the credit risk example. This will 
involve creating subclasses of AbstractProperty for each property, 
and an appropriate subclass of AbstractExample.  Also, write a class 
and methods to test your code. 

 

 

 


