
367

 27 ID3: Learning from Examples

Chapter

Objectives
Review of supervised learning and decision tree representation
 Representing decision trees as recursive structures
 A general decision tree induction algorithm
Information theoretic decision tree test selection heuristic

Chapter
Contents

27.1 Introduction to Supervised Learning
27.2 Representing Knowledge as Decision Trees
27.3 A Decision Tree Induction Program
27.4 ID3: An Information Theoretic Tree Induction Algorithm

 27.1 Introduction to Supervised Learning

 In machine learning, inductive learning refers to training a learner through use
of examples. The simplest case of this is rote learning, whereby the learner
simply memorizes the training examples and reuses them in the same
situations. Because they do not generalize from training data, rote learners
can only classify exact matches of previous examples. A further limitation
of rote learning is that the learned examples might contain conflicting
information, and without some form of generalization, the learner cannot
effectively deal with this noise. To be effective, a learner must apply
heuristics to induce reliable generalizations from multiple training examples
that can handle unseen situations with some degree of confidence.

A common inductive learning task is learning to classify specific instances
into general categories. In supervised learning, a teacher provides the system
with categorized training examples. This contrasts with clustering and
similar unsupervised learning tasks where the learner forms its own
categories from training data. See (Luger 2009) for a discussion of these
different learning tasks. An example of a supervised inductive learning
problem, which we will develop throughout the chapter is a bank wanting
to train a computer learning system categorize new borrowers according to
credit risk on the basis of properties such as their credit
history, current debt, their collateral, and current income.
One approach would be to look at the credit risk, as determined
over time by the actual debt payoff history of data from previous
borrowers to provide categorized examples. In this chapter we do exactly
that, using the ID3 algorithm.

27.2 Representing Knowledge as Decision Trees

 A decision tree is a simple form of knowledge representation that is widely
used in both advisors and machine learning systems. Decision trees are
recursive structures in which each node examines a property of a collection

368 Part IV: Programming in Java

of data, and then delegates further decision making to child nodes based on
the value of that particular property (Luger 2009, Section 10.3). The leaf
nodes of the decision tree are terminal states that return a class for the
given data collection. We can illustrate decision trees through the example
of a simple credit history evaluator that was used in (Luger 2009) in its
discussion of the ID3 learning algorithm. We refer the reader to this book
for a more detailed discussion, but will review the basic concepts of
decision trees and decision tree induction in this section.

Assume we wish to assign a credit risk of high, moderate, or low to people
based on the following properties of their credit rating:

Collateral, with possible values {adequate, none}

Income, with possible values {“0$ to $15K”, “$15K to $35K”,

“over $35K”}

Debt, with possible values {high, low}

Credit History, with possible values {good, bad, unknown}

We could represent risk criteria as a set of rules, such as “If debt is low,
and credit history is good, then risk is moderate.” Alternatively, we can
summarize a set of rules as a decision tree, as in figure 27.1. We can
perform a credit evaluation by walking the tree, using the values of the
person’s credit history properties to select a branch. For example, using the
decision tree of figure 27.1, an individual with credit history = unknown,
debt = low, collateral = adequate, and income = $15K to $35K would be
categorized as having low risk. Also note that this particular categorization
does not use the income property. This is a form of generalization, where
people with these values for credit history, debt, and collateral qualify as
having low risk, regardless of income.

Figure 27.1 A Decision Tree for the Credit Risk Problem (Luger 2009)

 Chapter 27 ID3: Learning from Examples 369

Now, assume the following set of 14 training examples. Although this does
not cover all possible instances, it is large enough to define a number of
meaningful decision trees, including the tree of figure 27.1 (the reader may
want to construct several such trees. See exercise 1). The challenge facing
any inductive learning algorithm is to produce a tree that both covers all
the training examples correctly, and has the highest probability of being
correct on new instances.

risk collateral income debt credit history

high none $0 to $15K high bad

high none $15K to $35K high unknown

moderate none $15K to $35K low unknown

high none $0 to $15K low unknown

low none over $35K low unknown

low adequate over $35K low unknown

high none $0 to $15K low bad

moderate adequate over $35K low bad

low none over $35K low good

low adequate over $35K high good

high none $0 to $15K high good

moderate none $15K to $35K high good

low none over $35K high good

high none $15K to $35K high bad

A valuable heuristic for producing such decision trees comes from the
time-honored logical principle of Occam’s Razor. This principle, first
articulated by the medieval logician, William of Occam, holds that we
should always prefer the simplest correct solution to any problem. In our
case, this would favor decision trees that not only classify all training
examples, but also that do so, on average, by examining the fewest
properties possible. The reason for this is straightforward: the simplest
decision tree that correctly handles the known examples is the tree that
makes the fewest assumptions about unknown instances. Stating it simply,
the fewer assumptions made, the less likely we are to make an erroneous
one.

Because omitting properties is a way of generalizing decision trees, and
because the order in which the properties are tested determines the ability
of the tree to omit properties while still matching all the test data, the order
of tests from root down to leaf nodes is the major factor in inducing
decision trees. This is captured in the following pseudo code for a recursive
algorithm for inducing trees:

function induce_tree (example_set, Properties)

begin

 if all entries in example_set are the same class

 then return a leaf node labeled with that class

370 Part IV: Programming in Java

 else if Properties is empty

 then return a leaf node with default class

 else

 begin

 select a property, P, and

 make it the root of the current tree

 delete P from Properties

 for each value V of P

 begin

 create a branch of the tree labeled with V

 let partition_V be elements of

 example_set with values V of P

 let branch_V =

 induce_tree (partition_V, Properties)

 attach branch_V to root for value V of P

 end

 endfor

 return current root

 end

 endif

end

This algorithm builds trees in a top-down fashion. It stops when all
examples have the same categorization, thereby pruning extraneous
branches of the tree. Using this algorithm, production of a simple (i.e.,
generalized) tree depends upon the order in which properties are selected.
This, in turn, depends upon the selection function used to select the
property to check in the current node of the tree.

For the decision tree induction, we use the original approach from the ID3
algorithm of (Quinlan 1986) elaborated by Luger (2009, Section 10.3). This
approach uses information theory to select the property that gains the most
information about the example set. Intuitively, this heuristic should
minimize the number of properties the tree checks. We will explain it in
detail later. We should note, however, that there are several important
extensions of the early ID3 paradigm, differing only in a few operations.
For example, C4.5 and C5.0 are Quinlan's (1996) own extensions that
overcome a number of the original ID3 weaknesses. We will not
implement C4.5/C5.0 here, but we should remember that more
sophisticated or domain-specific modifications to the core decision tree
induction algorithm may be desired by future developers using this code.

27.3 A Decision Tree Induction Program

 Implementing this in Java raises at least two interesting problems.
Managing trees, lists of examples, partitioning examples on various
properties, and so forth is a challenge for designing data structures. Our
example code will not be optimally efficient, but is intended to give the

 Chapter 27 ID3: Learning from Examples 371

student opportunities to improve performance by using table lookup and
other techniques to reduce time spent scanning lists of examples. The
other challenge will be in maintaining the quality of training data. We take a
simplified approach of requiring all examples contain legitimate values for
all desired properties. Although the machine learning literature is filled with
techniques for managing missing or noisy data, this simple assumption will
let us investigate a number of interesting Java techniques, such as
immutable objects, error checks in constructors, etc.

Figure 27.2 shows the five classes that form the basis of our
implementation. AbstractDecisionTreeNode defines the basic
behaviors of a decision tree. It is a recursive structure, as shown by the use
of an assembly link back to itself. AbstractDecisionTreeNode will
define methods to solve a new instance by walking the tree, and the basic
tree induction algorithm mentioned above. The method to evaluate a test
property’s partition of the example space into subproblems into will be
abstract in this class, allowing definition of multiple alternative evaluation
heuristics. The class, InformationTheoreticDecisionTreeNode,
will implement the basic ID3 evaluation heuristic, which uses information
theory to select a property that gives the greatest information gain on the
set of training examples.

The remaining classes define and manage training examples. An
AbstractProperty defines properties as <name, value> pairs. It is an
abstract class, requiring subclasses define a method to test for legal <name,
value> definitions. An AbstractExample defines examples as a set of
properties and a categorization of those properties: i.e. a single row in the
example table given above. Like AbstractProperty, it requires
subclasses define domain specific checks for the validity of examples.
Finally, ExampleSet maintains a set of training examples, such as is
given in the table above. It enforces checks that all examples are of the
same type, provides basic accessors, and also methods to partition an
example set on specific properties.

Figure 27.2 Class structure of decision tree nodes and examples

372 Part IV: Programming in Java

Properties as
Immutable

Objects

The basic definition of a property is straightforward: it consists of two
strings, defining the name and value respectively. A simple initial
implementation might be:

public class Property
{
 private String name = null;
 private String value = null;

 public Property(String name, String value)
 {
 this.name = name;
 this.value = value;
 }
 public String getName()
 {
 return name;
 }
 public String getValue()
 {
 return value;
 }
}

Although this gives the basic structure of the class, and would work in the
program, it fails to perform any correctness checks on data values. The first
of these the opportunity to perform type checks on property values.
Referring to the credit evaluation example, the only values for debt are
“high” and “low,” and a robust program should check for them.

We can implement this by making Property an abstract class that uses
an abstract method to test for legal property values. Each property type will
be a subclass that defines this method. Our definition then becomes:

public abstract class AbstractProperty
{
 private String value = null;
 public AbstractProperty(String name,
 String value)
 throws IllegalArgumentException
 {
 if(isLegalValue(value) == false)
 throw
 new IllegalArgumentException(value +
 "is an illegal Value for Property " +
 getName());
 this.value = value;
 }

 Chapter 27 ID3: Learning from Examples 373

 public final String getValue()
 {
 return value;
 }
 public abstract boolean isLegalValue(String
 value);
 public abstract String getName();
 }

This version uses the islegalValue(…) method to check for bad
values in the constructor, throwing an IllegalArgumentException
if one is found. Since property is now an abstract class, any property type
must define its own subclass defining the abstract methods. Also note that,
since the name of a property is the same for all instances of a type, we have
made getName() an abstract method as well. An example of how a
property can implement this is given by this implementation of the debt
property:

public class DebtProperty extends AbstractProperty {
 public static final String DEBT = "Debt";
 public static final String HIGH = "high";
 public static final String LOW = "low";
 public DebtProperty(String value)
 {
 super(value);
 }
 public boolean isLegalValue(String value)
 {
 return(value.equals(HIGH) ||
 value.equals(LOW));
 }
 public final String getName()
 {
 return DEBT;
 }
 }

Although simple, the implementation of AbstractProperty has
another interesting quality. Note that the member variable value is
private, and we have not provided a set method other than through the
constructor. This means that, once an instance of property is created, its
value cannot change. This pattern is called an immutable object. Because
immutable objects avoid many types of bugs (imagine the effect on the
learning algorithm of changing a property value during execution), this
should be used where it matches our intent. To reduce the chance that a
well-intentioned programmer will change this, we should write code so as
to make our intention clear. We can do this by making our get method
final, to prevent subclasses from violating the immutability pattern, and

374 Part IV: Programming in Java

also by defining set methods that throw an exception if called. This
completes the definition of AbstractProperty as:

public abstract class AbstractProperty

{

 private String value = null;

 public AbstractProperty(String value)

 throws IllegalArgumentException

 {

 if(isLegalValue(value) == false)

 throw

 new IllegalArgumentException(value +

 "is an illegal Property Value for " +

 getName());

 this.value = value;

 }

 public abstract boolean isLegalValue(String

 value);

 public abstract String getName();

 public final String getValue()

 {

 return value;

 }

 //Enforcing Immutable object pattern

 public final void setValue(String v)

 throws UnsupportedOperationException

 {

 throw new UnsupportedOperationException();

 }

 //Enforcing Immutable object pattern

 public final void setName(String n)

 throws UnsupportedOperationException

 {

 throw new UnsupportedOperationException();

 }

 }
Implementing

Examples
Like a property, an example is conceptually simple: it is a collection of
properties describing a problem instance and a categorization of that
instance. In our credit example, the properties that form an example are
debt, collateral, credit history, and income. The example category is a risk
assessment. Each row of the example table in section 27.1 would be
represented as an example. Like the property class, however, it also
presents opportunities for insuring the validity of examples. In this case, we
will require that an example consist only of specified properties, and that a

 Chapter 27 ID3: Learning from Examples 375

legal example include all properties. Examples also offer an opportunity to
use an immutable object pattern, since it makes little sense to allow
examples to change during the course of a learning session.

The structure of an example is similar to that of an
AbstractProperty: it is an abstract class that requires subclasses
define methods to support validity checks. We will follow the immutable
object pattern, providing access methods but no “add,” “set,” or other
modification methods, and requiring all properties be defined in the
constructor.

The class has two member variables. A category is a String defining
the classification of the example. In our credit example, this would be the
risk level of high, moderate, or low. The properties member variable is
a Map that indexes different properties by their name. We define two
constructors. The primary constructor does error checks to require that
each example contains all legal properties and only legal properties. The
single argument constructor allows us to define uncategorized examples.
Both of these call the private method, addProperties to add the
elements of the propertyList argument to the properties member
variable. This method also checks that the propertyList argument
contains only legal values and all legal values. The implementation of
AbstractExample is:

public abstract class AbstractExample
{
 private String category = null;
 private Map<String, AbstractProperty> properties
 = new HashMap <String, AbstractProperty> ();
 // Constructor for classified examples
 public AbstractExample(String category,
 AbstractProperty... propertyList)
 throws IllegalArgumentException
 {
 if(isLegalCategory(category) == false)
 throw
 new IllegalArgumentException(category +
 "is an illegal category for example.");
 this.category = category;
 addProperties(propertyList);
 }
 // Constructor for unclassified examples
 public AbstractExample(AbstractProperty...
 propertyList)
 throws IllegalArgumentException
 {
 addProperties(propertyList);
 }

376 Part IV: Programming in Java

 private void addProperties(AbstractProperty[]
 propertyList)
 throws IllegalArgumentException
 {
 Set<String> requiredProps =
 getPropertyNames();
 // check that all properties are legal
 for(int i = 0; i < propertyList.length;
 i++)
 {
 AbstractProperty prop =
 propertyList[i];
 if(requiredProps.contains(
 prop.getName()) == false)
 throw
 new IllegalArgumentException(
 prop.getName() +
 "illegal Property for example.");
 properties.put(prop.getName(), prop);
 requiredProps.remove(prop.getName());
 }
 // Check that all legal properties were used
 if(requiredProps.isEmpty() == false)
 {
 Object[] p = requiredProps.toArray();
 String props = "";
 for (int i = 0; i < p.length; i++)
 props += (String)p[i] + " ";
 throw
 new IllegalArgumentException(
 "Missing Properties in example: " +
 props);
 }
 }
 public AbstractProperty getProperty(
 String name)
 {
 return properties.get(name);
 }
 public String getCategory()
 {
 return category;

 Chapter 27 ID3: Learning from Examples 377

 }
 public String toString()
 {
 // to be defined by reader
 }
 public abstract Set<String> getPropertyNames();
 }

This implementation of AbstractExample as an immutable object is
incomplete in that it does not include the techniques demonstrated in
AbstractProperty to enforce the immutability pattern. We leave this
as an exercise.

Implementing
ExampleSet

ExampleSet, along with AbstractDecisionTreeNode, is one of
the most interesting classes in the implementation. This is because the
decision tree induction algorithm requires a number of fairly complex
operations for partitioning the example set on property values. The
implementation presented here is simple and somewhat inefficient, storing
examples as a simple vector. This requires examination of all examples to
form partitions, retrieve examples with a specific value for a property, etc.
We leave a more efficient implementation as an exercise.

In providing integrity checks on data, we have required that all examples be
categorized, and that all examples belong to the same class.

The basic member variables and accessors are defined as:
public class ExampleSet

{

 private Vector<AbstractExample> examples =

 new Vector<AbstractExample>();

 private HashSet<String> categories =

 new HashSet<String>();

 private Set<String> propertyNames = null;

 public void addExample(AbstractExample e)

 throws IllegalArgumentException

 {

 if(e.getCategory() == null)

 throw new IllegalArgumentException(

 "Example missing categorization.");

 // Check that new example is of same class

 // as existing examples

 if((examples.isEmpty()) ||

 e.getClass() ==

 examples.firstElement().getClass())

 {

 examples.add(e);

 categories.add(e.getCategory());

378 Part IV: Programming in Java

 if(propertyNames == null)

 propertyNames =
 new HashSet<String>(
 e.getPropertyNames());

 }

 else

 throw new IllegalArgumentException(
 "All examples must be same type.");

 }

 public int getSize()

 {

 return examples.size();

 }

 public boolean isEmpty()

 {

 return examples.isEmpty();

 }

 public AbstractExample getExample(int i)

 {

 return examples.get(i);

 }

 public Set<String> getCategories()

 {

 return new HashSet<String>(categories);

 }

 public Set<String> getPropertyNames()

 {

 return new HashSet<String>(propertyNames);

 }

 // More complex methods to be defined.

 public int getExampleCountByCategory(String cat)

 throws IllegalArgumentException

 {

 // to be defined below.

 }

 public HashMap<String, ExampleSet> partition(
 String propertyName)

 throws IllegalArgumentException

 {

 // to be defined below.

 }

}

 Chapter 27 ID3: Learning from Examples 379

As mentioned, this implementation is fairly simple. It stores examples as a
Vector, so most retrieval or partitioning operations will require iterating
through this list. The categories and propertyNames member
variables are a convenience, allowing simpler access of these values. Since
example sets should not change during a learning session, we could use an
immutable object pattern in the ExampleSet implementation. This
implementation does not, since it would lead to extremely complex
constructor implementations. Instead, we implemented an addExample
method. This method performs simple data integrity checks, requiring that
all examples be of the same type, and prohibiting unclassified examples.
Reworking this using an immutable pattern is left as an exercise. The
remaining methods are straightforward accessors.

ExampleSet includes a number of methods to support the induction
algorithm. The first of these counts the number of examples that belong to
a given category:

public int getExampleCountByCategory(String cat)

 throws IllegalArgumentException

{

 Iterator<AbstractExample> iter =

 examples.iterator();

 AbstractExample example;

 int count = 0;

 while(iter.hasNext())

 {

 example = iter.next();

 if(example.getCategory().equals(cat))

 count++;

 }

 return count;

 }

A more complex method partitions the example set according to different
examples value for a specified property. Partition takes as argument a
property name, and returns an instance of HashMap<String,
ExampleSet> where each key is a property value, and each value is an
instance of ExampleSet containing examples that have that value for the
chosen property. Partition calls to private methods, getValues,
which returns a list of values for a property that appear in the example set,
and getExamplesByProperty, which constructs a new instance of
ExampleSet where each example has the same value for a property.

public HashMap<String, ExampleSet> partition(

 String propertyName)

 throws IllegalArgumentException

{

 HashMap<String, ExampleSet> partition =

 new HashMap<String, ExampleSet>();

380 Part IV: Programming in Java

 Set<String> values = getValues(propertyName);
 Iterator<String> iter = values.iterator();
 while(iter.hasNext())

 {

 String val = iter.next();

 ExampleSet examples =

 getExamplesByProperty(propertyName,

 val);

 partition.put(val, examples);

 }

 return partition;

}

private Set<String> getValues(String propName)

{

 HashSet<String>values = new HashSet<String>();

 Iterator<AbstractExample> iter =

 examples.iterator();

 while(iter.hasNext())

 {

 AbstractExample ex = iter.next();
 values.add(ex.getProperty(propName).

 getValue());

 }

 return values;

}

private ExampleSet getExamplesByProperty(

 String propName, String value)

 throws IllegalArgumentException

{

 ExampleSet result = new ExampleSet();

 Iterator<AbstractExample> iter =

 examples.iterator();

 AbstractExample example;

 while(iter.hasNext())

 {

 example = iter.next();

 if(example.getProperty(propName).getValue().

 equals(value))

 result.addExample(example);

 }

 return result;

 }

 Chapter 27 ID3: Learning from Examples 381

Placing the partitioning algorithm in a method of ExampleSet, rather
than in the actual decision tree induction algorithm was an interesting
design decision. The reason for this choice was a desire to treat
ExampleSet as an abstract data type, including all operations on it in its
class definition.

Although this implementation works, it is inefficient, performing multiple
iterations through lists of examples. An alternative approach would
construct more complex sets of indices of examples by property and value
on construction. Trying this approach and evaluating its effectiveness is left
as an exercise.

Implementing
Decision Tree

Nodes

A decision tree node will define methods to solve problems by walking the
tree, as described in section 27.1. We have also chosen to implement the
basic induction algorithm in the decision tree class. Justification for this
decision was that the inherently recursive nature of the induction algorithm
matched the recursive structure of trees, simplifying the implementation.
Because the induction algorithm is general, and could be used with a
variety of heuristics for evaluating candidate example partitions, we will
make the basic implementation of decision trees an abstract class.

The basic definition of AbstractDecisionTreeNode appears below.
Member variables include category, which is set to a categorization in
leaf nodes; for internal nodes, its value is not defined.
DecisionPropertyName is the property on which the node branches;
it is undefined for leaf nodes. Children is a HashMap that indexes child
nodes by values of decisionPropertyName. Each constructor calls
induceTree to perform tree induction. Note that the two-argument
constructor is protected. Its second argument is the list of unused
properties for consideration by the induction algorithm, and it is only used
by the induceTree method. The remaining methods defined below are
straightforward accessors.

public abstract class AbstractDecisionTreeNode

{

 private String category = null;

 private String decisionPropertyName = null;

 private HashMap<String,AbstractDecisionTreeNode>

 children = new

 HashMap<String,AbstractDecisionTreeNode>();

 public AbstractDecisionTreeNode (

 ExampleSet examples)

 throws IllegalArgumentException

 {

 induceTree(examples,

 examples.getPropertyNames());

 }

 protected AbstractDecisionTreeNode(ExampleSet

 examples, Set<String> selectionProperties)

382 Part IV: Programming in Java

 throws IllegalArgumentException

 {

 induceTree(examples, selectionProperties);

 }

 public boolean isLeaf()

 {

 return children.isEmpty();

 }

 public String getCategory()

 {

 return category;

 }

 public String getDecisionProperty()

 {

 return decisionPropertyName;

 }

 public AbstractDecisionTreeNode getChild(String

 propertyValue)

 {

 return children.get(propertyValue);

 }

 public void addChild(String propertyValue,

 AbstractDecisionTreeNode child)

 {

 children.put(propertyValue, child);

 }

 public String Categorize(AbstractExample ex)

 {

 // defined below

 }

 public void induceTree(ExampleSet examples,

 Set<String> selectionProperties)

 throws IllegalArgumentException

 {

 // defined below

 }

 public void printTree(int level)

 {

 // implementation left as an exercise

 }

 protected abstract double

 Chapter 27 ID3: Learning from Examples 383

 evaluatePartitionQuality(HashMap<String,

 ExampleSet> part, ExampleSet examples)

 throws IllegalArgumentException;

 protected abstract AbstractDecisionTreeNode
 createChildNode(ExampleSet examples,

 Set<String> selectionProperties)

 throws IllegalArgumentException;

}

Note the two abstract methods for evaluating a candidate partition and
creating a new child node. These will be implemented on 27.3.

Categorize categorizes a new example by performing a recursive tree
walk.

public String categorize(AbstractExample ex)

{

 if(children.isEmpty())

 return category;

 if(decisionPropertyName == null)

 return category;

 AbstractProperty prop =

 ex.getProperty(decisionPropertyName);

 AbstractDecisionTreeNode child =

 children.get(prop.getValue());

 if(child == null)

 return null;

 return child.categorize(ex);

}

InduceTree performs the induction of decision trees. It deals with four
cases. The first is a normal termination: all examples belong to the same
category, so it creates a leaf node of that category. Cases two and three
occur if there is insufficient information to complete a categorization; in
this case, the algorithm creates a leaf node with a null category.

Case four performs the recursive step. It iterates through all properties that
have not been used in the decision tree (these are passed in the parameter
selectionProperties), using each property to partition the example
set. It evaluates the example set using the abstract method,
evaluatePartitionQuality. Once it finds the best evaluated
partition, it constructs child nodes for each branch.

public void induceTree(ExampleSet examples,
 Set<String> selectionProperties)

 throws IllegalArgumentException

{
 // Case 1: All instances are the same
 // category, the node is a leaf.

384 Part IV: Programming in Java

if(examples.getCategories().size() == 1)

 {

 category = examples.getCategories().

 iterator().next();

 return;

 }

 //Case 2: Empty example set. Create
 // leaf with no classification.

 if(examples.isEmpty())

 return;

 //Case 3: Empty property set; could not classify.

 if(selectionProperties.isEmpty())

 return;

 // Case 4: Choose test and build subtrees.
 // Initialize by partitioning on first
 // untried property.

 Iterator<String> iter =
 selectionProperties.iterator();

 String bestPropertyName = iter.next();

 HashMap<String, ExampleSet> bestPartition =
 examples.partition(bestPropertyName);

 double bestPartitionEvaluation =
 evaluatePartitionQuality(bestPartition,
 examples);

 // Iterate through remaining properties.

 while(iter.hasNext())
 {

 String nextProp = iter.next();

 HashMap<String, ExampleSet> nextPart =
 examples.partition(nextProp);

 double nextPartitionEvaluation =
 evaluatePartitionQuality(nextPart,

 examples);

 // Better partition found. Save.

 if(nextPartitionEvaluation >

 bestPartitionEvaluation)

 {

 bestPartitionEvaluation =

 nextPartitionEvaluation;

 bestPartition = nextPart;

 bestPropertyName = nextProp;

 }
 }
 // Create children; recursively build tree.

 this.decisionPropertyName = bestPropertyName;

 Chapter 27 ID3: Learning from Examples 385

 Set<String> newSelectionPropSet =
 new HashSet<String>(selectionProperties);

 newSelectionPropSet.remove(decisionPropertyName);

 iter = bestPartition.keySet().iterator();

 while(iter.hasNext())

 {

 String value = iter.next();

 ExampleSet child = bestPartition.get(value);

 children.put(value,

 createChildNode(child,

 newSelectionPropSet));

 }

27.4 ID3: An Information Theoretic Tree Induction Algorithm

 The heart of the ID3 algorithm is its use of information theory to evaluate
the quality of candidate partitions of the example set by choosing
properties that gain the most information about an examples
categorization. Luger (2009) discusses this approach in detail, but we will
review it briefly here.

Shannon (1948) developed a mathematical theory of information that
allows us to measure the information content of a message. Widely used in
telecommunications to determine such things as the capacity of a channel,
the optimality of encoding schemes, etc., it is a general theory that we will
use to measure the quality of a decision property.

Shannon’s insight was that the information content of a message depended
upon two factors. One was the size of the set of all possible messages, and
the probability of each message occurring. Given a set of possible
messages, M = {m1, m2 . . . mn}, the information content of any
individual message is measured in bits by the sum, across all messages in M
of the probability of each massage times the log to the base 2 of that
probability.

 I(M) = Σ – p(mi) log2 p(mi)

Applying this to the problem of decision tree induction, we can regard a set
of examples as a set of possible messages about the categorization of an
example. The probability of a message (a given category) is the number of
examples with that category divided by the size of the example set. For
example, in the table in section 27.1, there are 14 examples. Six of the
examples have high risk, so p(risk = high) = 6/14. Similarly, p(risk =
moderate) = 3/14, and p(risk = low) = 5/14. So, the information in any
example in the set is:

I(example set) = -6/14 log (6/14) -3/14 log (3/14) -5/14 log (5/14)

 = - 6/14 * (-1.222) - 3/14 * (-2.222) - 5/14 * (-1.485)

 = 1.531 bits

We can think of the recursive tree induction algorithm as gaining
information about the example set at each iteration. If we assume a set of

386 Part IV: Programming in Java

training instances, C, and a property P with n values, then P will partition C
into n subsets, {c1, c2, . . . cY}. The information needed to finish inducing
the tree can be measured as the sum of the information in each subset of
the partition, weighted by the size of that partition. That is, the expected
information gain to complete the tree, E, is computed by:

 E(P) = S (|ci|/|C|) * I(ci)

Therefore, the information gained for property P is:

 Gain(P) = I(C) - E(P)

The ID3 algorithm uses this value to rank candidate partitions.
Implementing

Information
Theoretic

Evaluation

We will implement this in a subclass of AbstractDecisionTreeNode
called InformationTheoreticDecisionTreeNode. This class will
implement the two abstract methods of the parent class, along with needed
constructors. The createChildNode method is called in
AbstractDecisionTreeNode to create the proper type of child node.
EvaluatePartitionQuality computes the information gain of a
partition. It calls the private methods computeInformation and
log2.

public class InformationTheoreticDecisionTreeNode
 extends AbstractDecisionTreeNode

{

 public InformationTheoreticDecisionTreeNode(

 ExampleSet examples)

 throws IllegalArgumentException

 {

 super(examples);

 }

 public InformationTheoreticDecisionTreeNode(

 ExampleSet examples,

 Set<String> selectionProperties)

 throws IllegalArgumentException

 {

 super(examples, selectionProperties);

 }

 protected AbstractDecisionTreeNode

 createChildNode(

 ExampleSet examples,

 Set<String> selectionProperties)

 throws IllegalArgumentException

 {

 return new

 InformationTheoreticDecisionTreeNode(

 examples, selectionProperties);

 }

 Chapter 27 ID3: Learning from Examples 387

 protected double evaluatePartitionQuality(
 HashMap<String, ExampleSet> part,
 ExampleSet examples)

 throws IllegalArgumentException

 {

 double examplesInfo =
 computeInformation(examples);

 int totalSize = examples.getSize();

 double expectedInfo = 0.0;

 Iterator<String> iter =
 part.keySet().iterator();

 while(iter.hasNext())

 {

 ExampleSet ex = part.get(iter.next());

 int partSize = ex.getSize();

 expectedInfo += computeInformation(ex)

 * partSize/totalSize;
 }

 return examplesInfo - expectedInfo;

 }

 private double computeInformation(
 ExampleSet examples)

 throws IllegalArgumentException

 {

 Set<String> categories =
 examples.getCategories();

 double info = 0.0;

 double totalCount = examples.getSize();

 Iterator<String> iter =
 categories.iterator();

 while (iter.hasNext())

 {

 String cat = iter.next();

 double catCount = examples.

 getExampleCountByCategory(cat);

 info += -(catCount/totalCount)*
 log2(catCount/totalCount);

 }

 return info;

 }

 private double log2(double a)

 {

 return Math.log10(a)/Math.log10(2);

 }

}

388 Part IV: Programming in Java

 Exercises

 1. Construct two or three different trees that correctly classify the training
examples in the table of section 27.1. Compare their complexity using
average path length from root to leaf as a simple metric. What informal
heuristics would use in constructing the simplest trees to match the data?
Manually build a tree using the information theoretic test selection
algorithm from the ID3 algorithm. How does this compare with your
informal heuristics?

2. Extend the definition of AbstractExample to enforce the
immutable object pattern using AbstractProperty as an example.

3.The methods AbstractExample and AbstractProperty throw
exceptions defined in Java, such as IllegalArgumentException
or UnsupportedOperationException when passed illegal values
or implementers try to violate the immutable object pattern. An alternative
approach would use user-defined exceptions, defined as subclasses of
java.lang.RuntimeException. Implement this approach, and discuss its
advantages and disadvantages.

4. The implementation of ExampleSet in section 27.2.3 stores
component examples as a simple vector. This requires iteration over all
examples to partition the example set on a property, count categories, etc.
Redo the implementation using a set of maps to allow constant time
retrieval of examples having a certain property value, category, etc.
Evaluate performance for this implementation and that given in the
chapter.

5. Complete the implementation for the credit risk example. This will
involve creating subclasses of AbstractProperty for each property,
and an appropriate subclass of AbstractExample. Also, write a class
and methods to test your code.

